Rbiotics

RNA-Antibiotika
Ein digitaler Ansatz für neue RNA-Antibiotika

Konventionelle Antibiotika wirken meist gegen ein breites Spektrum von bakteriellen Erregern. Dies befördert die Entwicklung von multiresistenten Krankheitserregern und zerstört zugleich die Zusammensetzung unserer schützenden Mikrobiota, was vielfältige und ungewollte Auswirkungen auf unsere Gesundheit zur Folge hat. Es braucht daher neue Antibiotika, die spezies-spezifisch wirken und somit ganz gezielt einzelne Erreger ausschalten. Unser Team forscht in einem fächerübergreifenden Ansatz an einer neuartigen Wirkstoffgruppe von RNA-ähnlichen Molekülen, sogenannte Peptid-Nukleinsäuren (englisch peptide nucleic acids, PNA), mit der man spezifisch einzelne Bakterienstämme behandeln kann. Diese RNA-Antibiotika können mit einfachen chemischen Mitteln verändert werden, um eine spezifische Wirksamkeit gegen neu auftretende Erreger zu erreichen. Um diesen Anpassungsprozess zu automatisieren, soll über Hochdurchsatzverfahren und maschinelles Lernen eine digitale Plattform geschaffen werden, die Forscher in die Lage versetzt, diese Wirkstoffmoleküle gezielt gegen eine Vielzahl von gefährlichen Krankheitserregern zu erzeugen.

Strategie und Voraussetzungen

Peptid-Nukleinsäuren sind RNA-ähnliche Moleküle, die über komplementäre Basenpaarung an mRNA Moleküle binden und die Produktion von Proteinen inhibieren können. Dieser Ansatz wurde bereits in präklinischen Studien als wirksam bestätigt, doch es gibt viele offene Fragen, z.B. zu Regeln der Programmierung solcher RNA-Antibiotika, Mechanismen der Resistenzentwicklung und möglicher Toxizität gegenüber Wirtszellen oder Vertretern der umgebenden Mkrobiota. Wir verfolgen eine Kombination aus Transkriptomanalyse und maschinellem Lernen, um die Effekte von PNAs auf die Bakterien zu verstehen und effektive PNA Kandidaten zu identifizieren.

Ziele des Forschungsvorhabens

Das Ziel unseres Forschungsansatzes ist es, effektive PNA-Kandidaten für wichtige klinische Krankheitserreger zu etablieren. Hierzu wollen wir durch die systematische Analyse empirischer Datenmengen die molekularen Grundlagen von PNA-Aktivität und Resistenzen dagegen charakterisieren. Die Erkenntnisse, welche wir aus diesen Studien gewinnen, werden die Grundlage für zukünftiges rationales Design von RNA-basierten Antibiotika gegen multiresistente Krankheitserreger und zur Editierung des Mikrobioms bilden.

PNA coupling

© Sandy Pernitzsch

Nutzen für die Gesellschaft

Die Entwicklung von RNA-basierten Antibiotika hat vielfältige Bedeutung für die Behandlung von Infektionskrankheiten. Am wichtigsten ist die potentielle Vermeidung einer ungerichteten Störung unserer gesunden Bakterienflora. Das kann eine schnellere Genesung befördern und außerdem ungewollte Resistenzentwicklungen verhindern. Weiterhin könnte man mit dieser Strategie Bakterien funktionell verändern, sodass z.B. resistente Bakterien wieder auf ein konventionelles Antibiotikum ansprechen oder Pathogene nicht mehr ihre Virulenzfaktoren, z.B. Toxine, ausbilden können. Da bestimmte bakterielle Erreger auch mit einer veränderten Tumorgenese assoziiert werden, könnten solche RNA-Antibiotika zukünftig auch für die Krebsbehandlung interessant werden.

Das Team

Prof. Dr. Jörg Vogel
Projektleitung

Universität Würzburg
Medizinische Fakultät
Institut für Molekulare Infektionsbiologie

Dr. Franziska Faber
Projektleitung

Universität Würzburg
Medizinische Fakultät
Institut für Molekulare Infektionsbiologie

Jun. Prof. Dr. Lars Barquist
Projektleitung

Universität Würzburg
Medizinische Fakultät
Institut für Molekulare Infektionsbiologie

Publikationen
  • Antibiotikaresistenzen: Mit Grundlagenforschung und Datenvernetzung gegen die globale Herausforderung
    Kaltenhauser U, Hauser A
    Biotechnologie in Bayern 2022; München, bioM
  • Identification of Antimotilins, Novel Inhibitors of Helicobacter pylori Flagellar Motility That Inhibit Stomach Colonization in a Mouse Model
    Suerbaum S, Coombs N, Patel L, Pscheniza D, Rox K, Falk C, Gruber AD, Kershaw O, Chhatwal P, Brönstrup M, Bilitewski U, Josenhans C
    mbio 2022; 13(2): e0375521
  • Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update
    Schneider F, Gessner A, El-Najjar N
    Antibiotics (Basel) 2022; 11(2): 173
  • On microbial syringes: Advances in our understanding of type III secretion systems in bacterial pathogenesis
    Hornef MW, Jantsch J
    Phys Life Rev 2021; 39: 96-98
  • High Na(+) Environments Impair Phagocyte Oxidase-Dependent Antibacterial Activity of Neutrophils
    Krampert L, Bauer K, Ebner S, Neubert P, Ossner T, Weigert A, Schatz V, Toelge M, Schroder A, Herrmann M, Schnare M, Dorhoi A, Jantsch J
    Front Immunol 2021; 12: 712948
  • Sfaira accelerates data and model reuse in single cell genomics
    Fischer DS, Dony L, König M, Moeed A, Zappia L, Heumos L, Tritschler S, Holmberg O, Aliee H, Theis FJ
    Genome Biol 2021; 22(1): 248
  • Salt Transiently Inhibits Mitochondrial Energetics in Mononuclear Phagocytes
    Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, McParland V, Swinnen D, Geuzens A, Maifeld A, Krampert L, Vogl M, Mähler A, Wilck N, Marko L, Tilic E, Forslund SK, Binger KJ, Stegbauer J, Dechend R, Kleinewietfeld M, Jantsch J, Kempa S, Müller DN
    Circulation 2021; 144: 144-158
  • Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori
    Pernitzsch SR, Alzheimer M, Bremer BU, Robbe-Saule M, de Reuse H, Sharma CM
    Nature Communications 2021; 12(1): 4433
  • Sodium and its manifold impact on our immune system
    Jobin K, Müller DN, Jantsch J, Kurts C
    Trends Immunol 2021; 42(6): 469-479
  • Inflammasomes in dendritic cells: Friend or foe?
    Hatscher L, Amon L, Heger L, Dudziak D
    Immunol Lett 2021; 234: 16-32
  • Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics
    Popella L, Jung J, Popova K, Durica-Mitić S, Barquist L, Vogel J
    Nucleic Acids Res 2021; 49(8): 4705-4724
  • Select hyperactivating NLRP3 ligands enhance the TH1- and TH17-inducing potential of human type 2 conventional dendritic cells
    Hatscher L, Lehmann CHK, Purbojo A, Onderka C, Liang C, Hartmann A, Cesnjevar R, Bruns H, Gross O, Nimmerjahn F, Ivanović-Burmazović I, Kunz M, Heger L, Dudziak D
    Science Signaling 2021; 14(680): eabe1757
  • Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori
    Ailloud F, Estibariz I und Suerbaum S
    FEMS Microbiol Rev 2021; 45(1): fuaa042
  • A Repeat-Associated Small RNA Controls the Major Virulence Factors of Helicobacter pylori.
    Eisenbart SK, Alzheimer M, Pernitzsch SR, Dietrich S, Stahl S, Sharma CM
    Molecular Cell 2020; 80(2): 210-226.e7
  • Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis
    Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, Dudziak D, Harrer T, Gessner A, Nimmerjahn F
    Elife 2020; 9: e55319
  • Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy
    Amon L, Hatscher L, Heger L, Dudziak D, Lehmann CHK
    Pharmaceutics 2020; 12(7): 663
  • Proton Motive Force Disruptors Block Bacterial Competence and Horizontal Gene Transfer.
    Domenech A, Brochado AR, Sender V, Hentrich K, Henriques-Normark B, Typas A and Veening JW
    Cell Host Microbe 2020; 27(4): 544-555.e3
  • A Novel Rapid Sample Preparation Method for MALDI-TOF MS Permits Borrelia burgdorferi Sensu Lato Species and Isolate Differentiation
    Neumann-Cip AC, Fingerle V, Margos G, Straubinger RK, Overzier E, Ulrich S, Wieser A
    Front Microbiol 2020; 11: 690
  • An RNA biology perspective on species-specific programmable RNA antibiotics
    Vogel, Jörg
    Mol Microbiol 2020; 113(3): 550-559
  • A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni.
    Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, Sharma CM
    PLoS Pathogens 2020; 16(2): e1008304
  • Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF.
    Delacher M, Imbusch CD, Hotz-Wagenblatt A, Mallm JP, Bauer K, Simon M, Riegel D, Rendeiro AF, Bittner S, Sanderink L, Pant A, Schmidleithner L, Braband KL, Echtenachter B, Fischer A, Giunchiglia V, Hoffmann P, Edinger M, Bock C, Rehli M, Brors B, Schmidl C, Feuerer M
    Immunity 2020; 52(2): 295-312.e11
  • A decade of advances in transposon-insertion sequencing
    Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J
    Nat Rev Genet 2020; 9: 526-540
  • HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting
    Neubert P, Weichselbaum A, Reitinger C, Schatz V, Schröder A, Ferdinand JR, Simon M, Bär AL, Brochhausen C, Gerlach RG, Tomiuk S, Hammer K, Wagner S, van Zandbergen G, Binger KJ, Müller DN, Kitada K, Clatworthy MR, Kurts C, Titze J, Abdullah Z, Jantsch J
    Autophagy 2019; 15(11): 1899-1916
  • Deep learning: new computational modelling techniques for genomics
    Eraslan G, Avsec Ž, Gagneur J, Theis FJ
    Nat Rev Genet 2019; 20(7): 389-403
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
    Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, AstraZeneca-Sanger Drug Combination DREAM Consortium, Jang IS, Ghazoui Z, Ahsen ME, Vogel R, Neto EC, Norman T, Tang EKY, Garnett MJ, Veroli GYD, Fawell S, Stolovitzky G, Guinney J, Dry JR, Saez-Rodriguez J
    Nat Commun 2019; 10(1): 2674
  • Microbial networks in SPRING – Semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome data
    Yoon G, Gaynanova I, Müller CL
    Frontiers in Genetics 2019; 10: 516
  • Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps
    Ailloud F, Didelot X, Woltemate S, Pfaffinger G, Overmann, J, Bader RC, Schulz C, Malfertheiner P, Suerbaum S
    Nat Commun 2019; 10(1): 2273
  • Rbpj expression in regulatory T cells is critical for restraining TH2 responses
    Delacher M, Schmidl C, Herzig Y, Breloer M, Hartmann W, Brunk F, Kägebein D, Träger U, Hofer AC, Bittner S, Weichenhan D, Imbusch CD, Hotz-Wagenblatt A, Hielscher T, Breiling A, Federico G, Gröne, HJ, Schmid RM, Rehli M, Abramson J, Feuerer M
    Nat Commun 2019; 10(1): 1621
  • Limitation of TCA Cycle Intermediates Represents an Oxygen-Independent Nutritional Antibacterial Effector Mechanism of Macrophages
    Hayek I, Fischer F, Schulze-Luehrmann J, Dettmer K, Sobotta K, Schatz V, Kohl L, Boden K, Lang R, Oefner PJ, Wirtz S, Jantsch J, Lührmann A
    Cell Rep 2019; 26(13): 3502-3510.e6
Beteiligte Forschungseinrichtungen

Julius-Maximilians-Universität Würzburg
Medizinische Fakultät
Institut für Molekulare Infektionsbiologie