DynamicKit

Suche nach neuen Kombinationstherapien gegen multiresistente Tuberkulose
Suche nach neuen Kombinationstherapien gegen multiresistente Tuberkulose durch eine neue Proteomik-Technologie und künstliche Intelligenz

Tuberkulose (TB) ist die tödlichste Infektionskrankheit des Menschen und fordert jedes Jahr weltweit rund 1,5 Millionen Menschenleben. Um diese Lungenkrankheit erfolgreich zu behandeln, muss eine Mischung verschiedener Medikamente über mehrere Monate hinweg verabreicht werden. Dies ist jedoch problematisch, da die bakteriellen Erreger resistent werden und selbst in behandelbaren Bakterienpopulationen hochresistente Subpopulationen nachgewiesen werden können. Um die Ausbreitung der Krankheit zu verhindern, ist es daher nicht nur notwendig, neue Antibiotika zu entwickeln, sondern auch immer wieder neue Wirkstoffkombinationen zu finden. Solche Kombinationen können bisher nur empirisch in aufwändigen klinischen Studien identifiziert werden. Neue digitale Werkzeuge in Kombination mit neuartigen Analysewerkzeugen, wie z.B. selbstlernende Algorithmen der künstlichen Intelligenz, haben das Potenzial, das Zusammenspiel verschiedener Antibiotika auf den mykobakteriellen Stoffwechsel schneller und kostengünstiger zu entschlüsseln, so dass geeignete Medikamentencocktails zur Überwindung der TB-Arzneimittelresistenz und zur Verbesserung der derzeitigen Behandlungsschemata identifiziert werden können.

Die Resistenz gegen Arzneimittel ist eine dramatische Herausforderung für die tödlichste Infektionskrankheit der Welt, die Tuberkulose (TB). In unserem Projekt verwenden wir selbstlernende Algorithmen, um die Interaktion verschiedener Medikamente in ihrer Wirkung auf den Stoffwechsel von Mykobakterien, den Erregern der Tuberkulose, zu verstehen. Auf diese Weise können wir nicht nur neue geeignete Arzneimittelkombinationen für die Tuberkulosebehandlung vorhersagen, sondern auch biologische Moleküle bestimmen, die Resistenzmechanismen widerspiegeln, so dass wir herausfinden können, wie wir dies mit Medikamenten gezielt rückgängig machen können. Dieser kombinierte Ansatz ergibt ein dringend benötigtes präklinisches Labormodell, mit dem wir die weitere Ausbreitung der Krankheit stoppen können.

Strategie und Voraussetzungen

Die Identifizierung neuer Arzneimittelkombinationen bei Tuberkulose ist sehr schwierig, da geeignete präklinische Modelle zur Vorhersage von Synergieeffekten fehlen. Dies ist ein große Herausforderung für die Wissenschaft, um den steigenden Bedarf an Therapien gerecht zu werden.

Zunächst werden wir die Eigenschaften üblicher antimycobakterieller Wirkstoffe untersuchen. Eine neue experimentelle Technik, die an der LMU entwickelt wurde, ermöglicht es uns, ihre Wirkungsweise, Resistenzmechanismen und Anpassungsreaktionen in noch nie dagewesener zeitlicher Auflösung zu beschreiben. Dies wird es uns ermöglichen die Wirkung verschiedener Antibiotika sowie auch deren Kombinationen zu charakterisieren.

Diese Analyse wird dank künstlicher Intelligenz und Systembiologie vorangetrieben. Ein besseres Verständnis des Erregers wird gewonnenen mit der Modellierung der dynamischen Daten, und ermöglicht die Entwicklung neuer Therapieansätze. Neuronale Netzwerke und Random Forests werden trainiert um neue Medikamentenkombinationen und deren Wirkung vorherzusagen.

Ziele des Forschungsvorhabens

Unser Hauptziel ist die Entwicklung neuer Therapieansätze gegen normale und resistente Tuberkulose, welches basiert auf einer neuen experimentellen Methoden und künstlicher Intelligenz.

Auf diese Weise wollen wir herausfinden, welche Wirkstoffe ideal zusammenpassen, um das Potential von Kombinationstherapien bei Tuberkulose auszuschöpfen. Dies könnte weniger toxische und kürzere Behandlungsschemata bieten. Darüber hinaus wollen wir neue Arzneimittelkombinationen identifizieren, die arzneimittel resistente TB wirksam bekämpfen können.

Nutzen für die Gesellschaft

Laut WHO stellen antimikrobielle Resistenzen, wie wir sie bei der Tuberkulose finden, derzeit die größte langfristige Bedrohung für die Gesundheit und das Wohlbefinden des Menschen dar. Dieses Projekt baut auf neuartigen Data Science Ansätzen innerhalb der Grundlagenforschung auf, um die Entwicklung und Verbreitung von Resistenzen innerhalb dieser Infektionskrankheit anzugehen und ihnen entgegenzuwirken.

In den letzten Jahren ist es der Molekularbiologie in Bayern gelungen, schnell auf internationale Trends zu reagieren und spezifische, für die wissenschaftliche Gemeinschaft relevante Schlüsselthemen aufzugreifen und voranzutreiben. Damit trägt dieses Projekt dazu bei, die künstliche Intelligenz, die Biotechnologie und die molekulare Medizin als Schlüsseltechnologien in Bayern auszubauen und international sichtbar zu machen.

Die erzielten Ergebnisse ermöglichen es den Fachkräften im Gesundheitswesen, sich mit den aktuellen Tuberkulose-Herausforderungen innerhalb und außerhalb Bayerns auseinanderzusetzen.

Das Team

Die Arbeitsgruppe von PD Dr. Andreas Wieser hat eine neue Proteomik-Technologie entwickelt, die es erstmals ermöglicht neu gebildete Biomoleküle in Mykobakterien, den Erregern der Tuberkulose, über die Zeit genau zu messen. Prof. Dr. Michael Hoelscher trägt mit seiner weltweit führenden Expertise auf dem Gebiet der Infektionskrankheiten und seiner Erfahrung in der Koordination von Arzneimittelstudien bei. Prof. Dr. Hoelscher’s Arbeitsgruppe ermöglicht den Zugang zu neuartigen Substanzen und Daten über klinische Studien im Bereich der Tuberkulose. Prof. Dr. Dr. Fabian Theis und Dr. Michael Menden leiten die rechnergestützten Analysen mit künstlicher Intelligenz.

Kooperationen

Mit ihrer interdisziplinären Grundlagenforschung verbindet das Forschungsteam Expertise aus Bereichen wie Bioinformatik, Künstliche Intelligenz und Maschinelles Lernen zum Verständnis zellulärer Prozesse (F. Theis / M. Menden), Analytische Chemie, Medizinische Mikrobiologie (A. Wieser) und Tropenmedizin einschließlich Therapie bei Tuberkulose / Klinische Studien (M. Hoelscher). Dieses Projekt wird stark vom wissenschaftlichen Netzwerk von BayResQ.net profitieren.

PD Dr. Andreas Wieser
Projektleitung

Ludwig-Maximilians-Universität München
Max von Pettenkofer Institut

Prof. Dr. Dr. Fabian Theis
Projektleitung

Technische Universität München
Institut für Computational Biology
Helmholtz Zentrum München

Prof. Dr. med. Michael Hoelscher
Projektleitung

Ludwig-Maximilians-Universität München
Infektionskrankheiten und Tropenmedizin
Medizinische Fakultät

Dr. Michael Menden
Projektleitung

Ludwig-Maximilians-Universität München
Institut für Computational Biology
Helmholtz Zentrum München

Publikationen
  • Antibiotikaresistenzen: Mit Grundlagenforschung und Datenvernetzung gegen die globale Herausforderung
    Kaltenhauser U, Hauser A
    Biotechnologie in Bayern 2022; München, bioM
  • Identification of Antimotilins, Novel Inhibitors of Helicobacter pylori Flagellar Motility That Inhibit Stomach Colonization in a Mouse Model
    Suerbaum S, Coombs N, Patel L, Pscheniza D, Rox K, Falk C, Gruber AD, Kershaw O, Chhatwal P, Brönstrup M, Bilitewski U, Josenhans C
    mbio 2022; 13(2): e0375521
  • Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update
    Schneider F, Gessner A, El-Najjar N
    Antibiotics (Basel) 2022; 11(2): 173
  • On microbial syringes: Advances in our understanding of type III secretion systems in bacterial pathogenesis
    Hornef MW, Jantsch J
    Phys Life Rev 2021; 39: 96-98
  • High Na(+) Environments Impair Phagocyte Oxidase-Dependent Antibacterial Activity of Neutrophils
    Krampert L, Bauer K, Ebner S, Neubert P, Ossner T, Weigert A, Schatz V, Toelge M, Schroder A, Herrmann M, Schnare M, Dorhoi A, Jantsch J
    Front Immunol 2021; 12: 712948
  • Sfaira accelerates data and model reuse in single cell genomics
    Fischer DS, Dony L, König M, Moeed A, Zappia L, Heumos L, Tritschler S, Holmberg O, Aliee H, Theis FJ
    Genome Biol 2021; 22(1): 248
  • Salt Transiently Inhibits Mitochondrial Energetics in Mononuclear Phagocytes
    Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, McParland V, Swinnen D, Geuzens A, Maifeld A, Krampert L, Vogl M, Mähler A, Wilck N, Marko L, Tilic E, Forslund SK, Binger KJ, Stegbauer J, Dechend R, Kleinewietfeld M, Jantsch J, Kempa S, Müller DN
    Circulation 2021; 144: 144-158
  • Small RNA mediated gradual control of lipopolysaccharide biosynthesis affects antibiotic resistance in Helicobacter pylori
    Pernitzsch SR, Alzheimer M, Bremer BU, Robbe-Saule M, de Reuse H, Sharma CM
    Nature Communications 2021; 12(1): 4433
  • Sodium and its manifold impact on our immune system
    Jobin K, Müller DN, Jantsch J, Kurts C
    Trends Immunol 2021; 42(6): 469-479
  • Inflammasomes in dendritic cells: Friend or foe?
    Hatscher L, Amon L, Heger L, Dudziak D
    Immunol Lett 2021; 234: 16-32
  • Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics
    Popella L, Jung J, Popova K, Durica-Mitić S, Barquist L, Vogel J
    Nucleic Acids Res 2021; 49(8): 4705-4724
  • Select hyperactivating NLRP3 ligands enhance the TH1- and TH17-inducing potential of human type 2 conventional dendritic cells
    Hatscher L, Lehmann CHK, Purbojo A, Onderka C, Liang C, Hartmann A, Cesnjevar R, Bruns H, Gross O, Nimmerjahn F, Ivanović-Burmazović I, Kunz M, Heger L, Dudziak D
    Science Signaling 2021; 14(680): eabe1757
  • Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori
    Ailloud F, Estibariz I und Suerbaum S
    FEMS Microbiol Rev 2021; 45(1): fuaa042
  • A Repeat-Associated Small RNA Controls the Major Virulence Factors of Helicobacter pylori.
    Eisenbart SK, Alzheimer M, Pernitzsch SR, Dietrich S, Stahl S, Sharma CM
    Molecular Cell 2020; 80(2): 210-226.e7
  • Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in lyme arthritis
    Danzer H, Glaesner J, Baerenwaldt A, Reitinger C, Lux A, Heger L, Dudziak D, Harrer T, Gessner A, Nimmerjahn F
    Elife 2020; 9: e55319
  • Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy
    Amon L, Hatscher L, Heger L, Dudziak D, Lehmann CHK
    Pharmaceutics 2020; 12(7): 663
  • Proton Motive Force Disruptors Block Bacterial Competence and Horizontal Gene Transfer.
    Domenech A, Brochado AR, Sender V, Hentrich K, Henriques-Normark B, Typas A and Veening JW
    Cell Host Microbe 2020; 27(4): 544-555.e3
  • A Novel Rapid Sample Preparation Method for MALDI-TOF MS Permits Borrelia burgdorferi Sensu Lato Species and Isolate Differentiation
    Neumann-Cip AC, Fingerle V, Margos G, Straubinger RK, Overzier E, Ulrich S, Wieser A
    Front Microbiol 2020; 11: 690
  • An RNA biology perspective on species-specific programmable RNA antibiotics
    Vogel, Jörg
    Mol Microbiol 2020; 113(3): 550-559
  • A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni.
    Alzheimer M, Svensson SL, König F, Schweinlin M, Metzger M, Walles H, Sharma CM
    PLoS Pathogens 2020; 16(2): e1008304
  • Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF.
    Delacher M, Imbusch CD, Hotz-Wagenblatt A, Mallm JP, Bauer K, Simon M, Riegel D, Rendeiro AF, Bittner S, Sanderink L, Pant A, Schmidleithner L, Braband KL, Echtenachter B, Fischer A, Giunchiglia V, Hoffmann P, Edinger M, Bock C, Rehli M, Brors B, Schmidl C, Feuerer M
    Immunity 2020; 52(2): 295-312.e11
  • A decade of advances in transposon-insertion sequencing
    Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J
    Nat Rev Genet 2020; 9: 526-540
  • HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting
    Neubert P, Weichselbaum A, Reitinger C, Schatz V, Schröder A, Ferdinand JR, Simon M, Bär AL, Brochhausen C, Gerlach RG, Tomiuk S, Hammer K, Wagner S, van Zandbergen G, Binger KJ, Müller DN, Kitada K, Clatworthy MR, Kurts C, Titze J, Abdullah Z, Jantsch J
    Autophagy 2019; 15(11): 1899-1916
  • Deep learning: new computational modelling techniques for genomics
    Eraslan G, Avsec Ž, Gagneur J, Theis FJ
    Nat Rev Genet 2019; 20(7): 389-403
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
    Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, AstraZeneca-Sanger Drug Combination DREAM Consortium, Jang IS, Ghazoui Z, Ahsen ME, Vogel R, Neto EC, Norman T, Tang EKY, Garnett MJ, Veroli GYD, Fawell S, Stolovitzky G, Guinney J, Dry JR, Saez-Rodriguez J
    Nat Commun 2019; 10(1): 2674
  • Microbial networks in SPRING – Semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome data
    Yoon G, Gaynanova I, Müller CL
    Frontiers in Genetics 2019; 10: 516
  • Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps
    Ailloud F, Didelot X, Woltemate S, Pfaffinger G, Overmann, J, Bader RC, Schulz C, Malfertheiner P, Suerbaum S
    Nat Commun 2019; 10(1): 2273
  • Rbpj expression in regulatory T cells is critical for restraining TH2 responses
    Delacher M, Schmidl C, Herzig Y, Breloer M, Hartmann W, Brunk F, Kägebein D, Träger U, Hofer AC, Bittner S, Weichenhan D, Imbusch CD, Hotz-Wagenblatt A, Hielscher T, Breiling A, Federico G, Gröne, HJ, Schmid RM, Rehli M, Abramson J, Feuerer M
    Nat Commun 2019; 10(1): 1621
  • Limitation of TCA Cycle Intermediates Represents an Oxygen-Independent Nutritional Antibacterial Effector Mechanism of Macrophages
    Hayek I, Fischer F, Schulze-Luehrmann J, Dettmer K, Sobotta K, Schatz V, Kohl L, Boden K, Lang R, Oefner PJ, Wirtz S, Jantsch J, Lührmann A
    Cell Rep 2019; 26(13): 3502-3510.e6
Beteiligte Forschungseinrichtungen

Ludwig-Maximilians-Universität München
Max von Pettenkofer Institut

Technische Universität München
Helmholtz Zentrum München

Ludwig-Maximilians-Universität München
Infektionskrankheiten und Tropenmedizin
Medizinische Fakultät

Ludwig-Maximilians-Universität München
Institut für Computational Biology